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◮ A associative finite dimensional k-algebra

◮ E = {e1,e2, . . . ,er} chosen basis

◮ Multiplication law is encoded in structure constants: λk
ij ∈ k

with eiej =
∑

k λ
k
ij ek

◮ Associativity is expressed by the equations

∑

t
λt

ijλ
l
tk = λl

ijk =
∑

t
λl

itλ
t
jk

Think of the numbers {λk
ij } and {λl

ijk} as numerical invariants

attached to E -labelled triangles and squares:
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Associativity and triangulations

Associativity is then geometrically reflected in terms of the two

possible triangulations of the square:
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Polygons

More generally: Numerical invariants for labeled polygons
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ijkl

so that

λm
ijkl =

explicit formula in terms of {λc
ab}

for every triangulation of the pentagon.
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Frobenius structures

Let tr : A→ k be a linear map such that

1. A→ A∗,a 7→ tr(a−) is an isomorphism,

2. tr(ab) = tr(ba).

Then

◮ Dual basis E∗ = {e∗
1,e

∗
2, . . . ,e

∗
r } of A with tr(eie

∗
j ) = δij .

◮ (E∗)∗ = E so that ∗ is involutive.

◮ Our numerical invariants can be computed by the formulas

λk
ij = tr(eieje

∗
k) = tr(eje

∗
kei) = tr(e∗

keiej) � Z/(3)

λl
ijk = tr(eiejeke∗

l ) � Z/(4)

...

which have a manifest cyclic symmetry.



Oriented polygons

Enlarge range of definition of our invariants to oriented

polygons with oriented E -labeled edges:

i

j

k

l

m

� 7→ tr(eme∗
i eje

∗
kel)

which can still be computed in terms of a chosen triangulation

involving the vertices of the polygon.



Oriented marked surfaces
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Oriented marked surfaces

Natural continuation: Given an compact oriented surface S with

a finite nonempty set M ⊂ S of marked points, we can

associate to any Frobenius algebra A, a numerical invariant

i

...

. . .
�

�

�

7→ λ(S,M)

with

λ(S,M) = explicit formula for every triangulation

of S involving the vertices M.

This really works. . .
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Topological field theories

These invariants exist and originate in physics where they are

called partition functions which we have computed via state

sums.

The collection of all partition functions associated to a given

Frobenius algebra is called a topological field theory [Witten,

Atiyah, Moore-Segal, . . . ].

Example

For a finite group G consider the group algebra CG with its

standard Frobenius structure and basis E = {g1, . . . ,gr}. Given

a closed oriented marked surface (S,M), we have

λ(S,M) = #Fun(Π(S,M),BG).



Conclusion:

◮ Associativity

 the state sum is independent of chosen triangulation

◮ Frobenius structure

 cyclic symmetry which nicely interacts with orientation

⇒ numerical invariants of oriented marked surfaces



Part II - Heuristics

State sums for triangulated categories
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Context

◮ T triangulated category

◮ E = {A,B, . . . ,A′,B′, . . . } set of all objects

◮ Associate to an E -labeled triangle

A A′

B
0

1

2

7→ ΛB
AA′ =

{ A A′

B

}

∗

+1

the collection of all distinguished triangles in T involving

the objects determined by the edge labels.
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 these diagrams form the upper and lower cap of an

octahedron . . . or dually the front and back of a 3-simplex

Heuristically: The octahedral axiom is the analog of

associativity allowing us to pass from one triangulation to

another.



Postnikov systems

More generally, to an E -labeled polygon with a chosen

triangulation we associate the collection of certain Postnikov

systems [Gelfand-Manin] such as

A′′

A′′′

D
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What is the analog of a Frobenius structure?

Answer

Assume that the suspension functor of T “is” 2-periodic:

Σ2 ∼= id.

We rewrite a distinguished triangle as

A A′

B

+1

∼
A A′

ΣB

+1

+1+1

 the right-hand form has a manifest cyclic symmetry

analogous to the symmetry of the trace expression

tr(eieje
∗
k ) of a Frobenius algebra
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Conclusion

This heuristics suggests:

1. Existence of an invariant Λ(S,M) of a marked compact

oriented surface (S,M) associated with any 2-periodic

triangulated category T :

...

. . .�

�

�

7→ Λ(S,M)

2. State sum formulas should lead to a description of this

invariants in terms of
{

collections of distinguished triangles in T parametrized

by a chosen triangulation ∆(S,M) of the surface.

}

. . . let’s call these collections surface Postnikov systems.



Part III - Results
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T triangulated category equipped with differential Z/(2)-graded

enhancement.

The Waldhausen S•-construction S•(T ) is the simplicial space:

S0(T ) S1(T ) S2(T ) S3(T ) · · ·

0 objects triangles
octahedral

diagrams

Z/(2) Z/(3) Z/(4)



Main result I

Theorem

Let T be a triangulated category equipped with a differential

Z/2Z-graded enhancement. Denote by S•(T ) the simplicial

space given by Waldhausen’s S•-construction. Then

1. S•(T ) is a 2-Segal space ( “associativity”),

2. S•(T ) is canonically a cyclic space in the sense of Connes

(“Frobenius structure”).



Lowest 2-Segal conditions

0

1 2

3

→֒
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1
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←֓
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1 2

3

S2(T )×S1(T ) S2(T ) S3(T ) S2(T )×S1(T ) S2(T )
≃ ≃
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Proof strategy to exhibit cyclic symmetry

Step 1. Find the universal S•-construction in dgcat(2):

cosimplicial differential Z/(2)-graded category

F• : ∆ −→ dgcat(2)

such that, for every T ∈ dgcat(2), we have

S•(T ) = Map(F•,T ).

Step 2. Try to find F• which has manifest cyclic symmetry.

Solution

Fn := MFZ/(n+1)(k[z], zn+1)
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MFZ/(n+1)(k[z], zn+1)

◮ Z/(n + 1) acts by grading shift (strictly via dg functors)

◮ Indecomposable objects given by

[i , j] = k[z](i) k[z](j)
z j−i

z i−j

◮ . . . these correspond to the An-roots

◮ On the level of homotopy categories [A. Takahashi]:

H0(MFZ/(n+1)(k[z], zn+1)) ≃ Db(An −mod)(2)

◮ . . . this is Happel’s root category

◮ Z/(n + 1)-action is given by the Coxeter functor

[Bernstein-Gelfand-Ponomarev]



Main Theorem II

Theorem

Let C be a combinatorial model category and let X be a cyclic

2-Segal object in C. Let (S,M) be a stable compact oriented
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Main Theorem II

Theorem

Let C be a combinatorial model category and let X be a cyclic

2-Segal object in C. Let (S,M) be a stable compact oriented

marked surface. Then there exists an object X(S,M) in Ho(C)
which, for every triangulation ∆(S,M) of (S,M), comes

equipped with canonical isomorphism

X(S,M)

∼=
−→ holim

Λn→∆(S,M)
Xn.

Further, the mapping class group of (S,M) acts on X(S,M) via

automorphisms in Ho(C).

Remark

The isomorphism should be regarded as a categorified state

sum which computes X(S,M) in terms of a chosen triangulation.
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Are these categorified state sums computable?

Apply the theorem to the universal S•-construction F• to form

the universal Postnikov category of (S,M):

F (S,M) ∼= hocolim
Λn→∆(S,M)

Fn ∈ dgcat(2)

so that, for any T ∈ dgcat(2), we have

Map(F (S,M),T ) ≃ S•(T )(S,M)

≃ {(S,M)-surface Postnikov systems in T }.

The dg category F (S,M) can be explicitly computed in examples.
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(S,M) = 0
2

1
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1)(2)

The universal Postnikov system in F (S,M) is given by

X Y

X
0

1

2

 
k[x ] k

k[x ]

x

+1

The mapping class group Mod(S,M) is trivial.
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The generator of Mod(S,M) ∼= Z acts via −⊗O(1).



Example 3: Sphere with 3 marked points
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Example 3: Sphere with 3 marked points

(S,M) =  F (S,M) = Db(coh k[x , y ]/(xy)
︸ ︷︷ ︸

S

)(2)2′

1′

0′

0

1

2

The universal Postnikov system is given by

X Z

Y
0′

1′

2′

ΣZ ΣX

ΣY
0

1

2

 

S/(x) S/(y)

S

y

+1

x

+1

There is an action of Mod(S,M) ∼= S3 on F (S,M).
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Symplectic geometry of homological algebra

This list of examples also appears in the context of a proposal

of Maxim Kontsevich:

Our theory implements a 2-dimensional instance of his general

program to localize Fukaya categories of Stein manifolds along

singular Lagrangian spines.

Definition

F (S,M) topological coFukaya category of (S,M)

(F (S,M))∨ topological Fukaya category of (S,M)

Two classes of objects in the topological Fukaya category

(F (S,M))∨ correspond to:

1. oriented immersed arcs in S \M starting and ending in

∂S \M.

2. oriented immersed closed curves in S \M equipped with a

flat k∗-principal bundle.
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Example 2 - revisited

Set k = C. We have (F (S,M))∨ ≃ Db(cohP
1)(2).

(S,M) = λ

Cλ, λ ∈ C
∗


