Inga Benner

University of Stuttgart, Germany

Schwerpunkttagung SPP1388 Soltau March 26, 2014

Permutation modules for $k\Sigma_r$

Let k be an algebraically closed field and Σ_r the symmetric group on r letters.

Definition

A $k\Sigma_r$ -module M is called **permutation module** if

- ▶ M is k-free
- \triangleright Σ_r acts as a permutation group on a k-basis of M

We are interested in the permutation modules of the form

$$M^{\lambda} := k \underset{k\Sigma_{\lambda}}{\otimes} k\Sigma_{r}$$

where $\Sigma_{\lambda} = \Sigma_{\lambda_1} \times \Sigma_{\lambda_2} \times ... \times \Sigma_{\lambda_n} \subseteq \Sigma_r$ for a partition λ of r (short: $\lambda \vdash r$).

Young modules

Definition

Let $\lambda \vdash r$ and S_{λ} the (dual) Specht module with respect to λ . The **Young module** Y^{λ} is the unique indecomposable summand of M^{λ} with a quotient isomorphic to S_{λ} .

Theorem (James, 1983)

$$M^{\lambda} = \bigoplus_{\mu \vdash r} a_{\mu} Y^{\mu}$$
, with $a_{\mu} = 0$ if $\mu \leq \lambda$.

Theorem (Hemmer-Nakano,2004)

 $Ext_{k\Sigma_r}^1(Y^{\lambda}, S_{\mu}) = 0$ for all $\lambda, \mu \vdash r$, i.e. Y^{λ} is relative projective with respect to the category of Specht filtered $k\Sigma_r$ -modules.

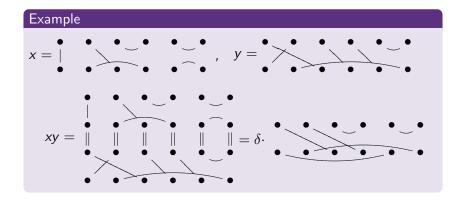
Brauer algebra

The Brauer algebra $B_k(r, \delta)$ is the associative k-algebra with k-basis consisting of diagrams

- 2 rows of r dots each
- each dot is connected to exactly one other dot

and multiplication $x \cdot y$:

- write x on top of y
- identify bottom row dots of x and top row dots of y
- follow lines from top row dots of x and bottom row dots of y
- replace circles by a factor $\delta \in k$
- ▶ remove all inner dots



Properties of $B_k(r, \delta)$

▶ $k\Sigma_r \subset B_k(r,\delta)$ for any parameter $\delta \in k$ e.g.

$$\Sigma_6 \ni (12463) =$$

- cellularly stratified [Hartmann-Henke-Koenig-Paget, 2010]:
 - ▶▶ iterated inflation of $k\Sigma_I$ along vector spaces V_I

$$A = \bigoplus_{l=1}^r k\Sigma_l \otimes_k V_l \otimes_k V_l$$
 as vector space

and
$$w = \bullet$$

- $\Rightarrow \exists u_I, v_I \in V_I : e_I = 1_{k\Sigma_I} \otimes u_I \otimes v_I \text{ idempotent}$
- $ightharpoonup e_I e_m = e_m e_I \text{ for } I > m$
- \triangleright cell modules are of the form $S_{\lambda} \otimes_k V_I$

Definition (Hartmann-Paget, 2005)

Let $A = B_k(r, \delta)$, λ a partition of $l \leq r, \frac{r-l}{2} \in \mathbb{N}$ and

$$e_{l}^{2}=e_{l}: \quad \left(\frac{1}{\delta^{\frac{r-l}{2}}}\right)^{2} \cdot \delta^{\frac{r-l}{2}} \cdot \quad \stackrel{|}{\bullet} \quad \cdots \quad \stackrel{|}{\bullet} \quad \stackrel{\bigcirc}{\bigcirc} \quad \cdots \quad \stackrel{\bigcirc}{\bullet} \quad \stackrel{\bigcirc}{\bigcirc} \quad \cdots \quad \stackrel{\bigcirc}{\bullet} \quad \stackrel{\bigcirc}{\bigcirc} \quad \cdots \quad \stackrel{\bigcirc}{\bigcirc} \quad \stackrel{\bullet}{\bigcirc} \quad \cdots \quad \stackrel{\bigcirc}{\bigcirc} \quad \stackrel{\bullet}{\bigcirc} \quad \cdots \quad \stackrel{\bigcirc}{\bigcirc} \quad$$

Definition (Hartmann-Paget, 2005)

Let $A = B_k(r, \delta)$, λ a partition of $l \le r, \frac{r-l}{2} \in \mathbb{N}$ and

Definition (Hartmann-Paget, 2005)

Let $A = B_k(r, \delta)$, λ a partition of $l \le r, \frac{r-l}{2} \in \mathbb{N}$ and

$$e_l := |$$
 if $\delta = 0$.

Then the right A-module $M^{\lambda} \underset{k\Sigma_{I}}{\otimes} e_{I}A$ is called **permutation** module.

Proposition (Hartmann-Paget, 2005)

 $M^{\lambda}\underset{k\Sigma_{l}}{\otimes}e_{l}A$ has a unique indecomposable direct summand $Y(l,\lambda)$ with quotient isomorphic to $Y^{\lambda}\otimes_{k}V_{l}$.

Theorem (Hartmann-Paget, 2005)

If chark $\neq 2,3$ then $M^{\lambda}\underset{k\Sigma_{l}}{\otimes}e_{l}A$ is a direct sum of modules $Y(m,\mu)$, where $Y(l,\lambda)$ occurs exactly once and all other summands satisfy $(m,\mu)<'(l,\lambda)$.

Theorem (Hartmann-Paget, 2005)

Let chark $\neq 2,3$ and $\delta \neq 0$ or $\delta = 0$ and $\lambda \neq \emptyset$. Then $M^{\lambda} \underset{k\Sigma_{l}}{\otimes} e_{l}A$ is relative projective with respect to the category of cell filtered modules.

Generalisation

Let $A = \bigoplus_{l=1}^r k\Sigma_l \otimes_k V_l \otimes_k V_l$ be a cellularly stratified algebra such that $k\Sigma_l$ is a subalgebra of e_lAe_l for every I. Set $J_{l-1} := Ae_{l-1}A$.

Definition

Lemma (HHKP,2010)

The cell modules are of the form $\operatorname{ind}_{l}S_{\lambda}$, where $\lambda \vdash l$.

Definition

The module $Ind_I M^{\lambda} = M^{\lambda} \underset{k\Sigma_I}{\otimes} e_I A$ is called **permutation module** for A.

Proposition

If chark $\neq 2,3$ then $Ind_I M^{\lambda}$ has a unique indecomposable direct summand $Y(I,\lambda)$ with quotient $ind_I Y^{\lambda}$.

Assumptions

Let *chark* \neq 2, 3. Assume that A satisfies for n < I:

- $e_l(J_n/J_{n-1}) \simeq ind_n(e_l(J_n/J_{n-1})e_n)$ as $k\Sigma_l$ -modules
- **4** Res_lind_n S_{ν} admits a filtration by Specht modules for $k\Sigma_{l}$

Let k, A be as above.

Theorem 1

Let k, A be as above.

Theorem 1

 $Y(I, \lambda)$ is the relative projective cover of $\operatorname{ind}_I S_{\lambda}$ with respect to the category of cell filtered modules.

► $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered

Let k, A be as above.

Theorem 1

- ▶ $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered
- ▶ chark \neq 2, 3 \Rightarrow ∃ quasi-hereditary algebra S(A) s.th. the category of cell filtered modules of A is equivalent to the category of standard filtered modules of S(A) as exact categories [Hemmer-Nakano 2005; Dlab-Ringel 1992, HHKP 2010]

Let k, A be as above.

Theorem 1

- ▶ $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered
- chark ≠ 2,3 ⇒ ∃ quasi-hereditary algebra S(A) s.th. the category of cell filtered modules of A is equivalent to the category of standard filtered modules of S(A) as exact categories [Hemmer-Nakano 2005; Dlab-Ringel 1992, HHKP 2010] → category of cell filtered modules of A closed under taking direct summands

Let k, A be as above.

Theorem 1

- ► $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered
- $Y(I, \lambda)$ cell filtered

Let k, A be as above.

Theorem 1

- ► $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered
- $Y(I, \lambda)$ cell filtered
- $\blacktriangleright Y^{\lambda} \twoheadrightarrow S_{\lambda}$

Let k, A be as above.

Theorem 1

- ► $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered
- $Y(I, \lambda)$ cell filtered
- ▶ $ind_{I}Y^{\lambda} \rightarrow ind_{I}S_{\lambda}$

Let k, A be as above.

Theorem 1

- ▶ $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered
- $Y(I, \lambda)$ cell filtered
- $Y(I,\lambda) \twoheadrightarrow ind_I Y^{\lambda} \twoheadrightarrow ind_I S_{\lambda}$

Let k, A be as above.

Theorem 1

- ▶ $res_n Ind_I M^{\lambda}$ cell filtered $\rightsquigarrow Ind_I M^{\lambda}$ cell filtered
- $Y(I, \lambda)$ cell filtered
- $\blacktriangleright Y(I,\lambda) \twoheadrightarrow ind_I Y^{\lambda} \twoheadrightarrow ind_I S_{\lambda}$
- ▶ Y^{λ} relative projective in the category of Specht filtered modules, $Res_lind_nS_{\lambda}$ cell filtered $\leadsto Y(I,\lambda)$ relative projective

Let k, A be as above.

Theorem 1

 $Y(I, \lambda)$ is the relative projective cover of $\operatorname{ind}_I S_{\lambda}$ with respect to the category of cell filtered modules.

Theorem 2

There is a decomposition

$$Ind_I M^{\lambda} = \bigoplus_{(m\mu)\succeq (I,\lambda)} Y(m,\mu)^{a_{m,\mu}}$$

with non-negative integers $a_{m,u}$. Moreover, $a_{l,\lambda} = 1$.

Summary

- HP: Definition and properties of permutation modules for Brauer algebras, using explicit construction for the Brauer algebra
- ► HHKP: Structural properties, general definition of Young modules, but no explicit construction
- ▶ B:
 - ►► Explicit construction of permutation modules/Young modules for cellularly stratified algebras satisfying the assumptions
 - ▶► Reprove HP's results using structural properties → HP's results are valid in general